Technische Universitat Minchen

How to Write a Great Guided Research
And why should | do it?

Dr. Roman Haas
With material from Dr. Elmar Juergens

In close cooperation with the Academic Advisors at TUM Computer Science

2011 - 2017 2017 — now

Research collaboration
with Prof. Pretschner

thesisguide.org

e Slides

TH ESIS GU IDE START HERE PREFACE CONTENT CONTRIBUTE ABOUT ME

e \ideo

e Detailed
Essays

e FAQ

2.

Agenda

1. Motivation
2. Preparation

3. Doing the work

Guided Research
/ \

e Guidance e Your own (small) research project
— Supervisor has research experience, — Related Work
helps you on your way — Implementation?
— Examiner must be from TUM — Proof?

Informatics or affiliated with the CIT _ Evaluation?

e Document and present your work

» Insights into real scientific work

Guided Research

Voluntary

6 months, 10 ECTS

Effort comparable to a more
labor-intensive lab course

Approx. 40 students/semester

Master’s Thesis

Mandatory

6 months, 30 ECTS

Full-Time

Approx. 100 students/semester

Less Formal than a Thesis

e Written document is ,,just” a scientific report on your results (8-12 pages in
English) which you need to send to your supervisor/examinor only

e You have to present your work
— At the chair
— Or at a ,,scientific event”

There are some formalia, though...

e You have to be enrolled in a Master’s program (Informatics, Data Engineering &
Analytics, Information Systems, Games Engineering, Robotics)

e Registration can be done anytime online

e Submission no later than the first lecture week of the next semester (6 months
duration)

e Cannot be extended

e No transfer of credits, you need an internal examiner (with whom you may work
together abroad)

https://portal.cit.tum.de/

Learning to Rank Extract Method Refactoring
Suggestions for Long Methods

[“]©

Result

ed 1 more detail by Jarvein and Kekalainen), and measures
The soadnes of the anking 1ot (cbained by the applcaton of the scoring
function). Mistakes in the top-most ranks have a bigger impact on the DCG
measure value. This is useful and important to us because we will not suggest
all possible refactoring candidates, but only the highest-ranked oncs. Given
& long method, m;, with refactoring candidates, Ci, suppose that 7, is the
ranking list on C; and y,. the set of mannally determined grades, then, the
DCG at position k is defined as DCG(K) = 32, e GU)D(7i(). where
G() is an exponential gain function, D(-) is a position discount function,
7,03 i the posiion of refctoring candidate, 5, 7., Wo set () =
245 — 1 and D(mi(j)) 3 To normalize the DCG, and to make
comparablewith measnres o ot g methods,we divide this DCG by the
DCG that a perfect ranking would have obtaine. Therefore, the NDCG for a
candidate ranking will alvays be in [0,1], w CG of 1 can only be
obtained by perfect rankings. In our evaluation, we consider the NDCG yalue

of the last position so that all ranks are taken into account. See Hang [1] for
further details

1.3 Approach

We discuss our approach to improve the scoring function in order to find the
best suggestions for extract method refactoring;

1.3.1 Extract Method Refactoring Candidates

In our previous work £, we presented an approach to derive extract method
refactoring suggestions automatically for long methods. The main steps are:
generating valid extract method refactoring candidates, ranking the candi-
Giton and praning the candidate st

In the following, a refactoring candidate is a sequence of statements that
can be extracted from a method into a new method. The remainder is the
method that contains all the statements from the original method after ap-
plying the refactoring, plus the call of the extracted method. The suggested
refactorings will help to improve the readability of the code and reduce its
complexity, hecause these are main reasons for developers to initiate code
refactoring (6.

We derived refactoring candidates from the control and data flow gray
of a method using the Continuous Quality Assessment Toolkit (ConQATH)
open source software. We filtered out all invalid candidates, that is those that
violate preconditiops that need to be fulfilled for extract method refactoring
(for details, sce (12]). The second step of our approach was to rank the valid

¥ v congat .org.

0,873, whereas for SV M-rank 1t 15 U430, Theretore, the scoring hunction found
by ListMLE performed better than the scoring function found by SVM-rank.

Table 1.2: Coefficients of Variation for Learned Coefficients

RQ2: How stable are the learned scoring functions?

Table [13 shows the average, minimum and maximum coefficients of varia-
tiom (OV) fr tho learoed cocliciets for LIXMLE and for SVM-ruk. Sl
Vs indicate that in relative terms the results from the single

10crons Iold procodur did ot vary Jo, whercas big CVs idicat big (ler
ferences between the learned coefficients. As the CVs of the single features
from ListMLE are much smaller than those of SVM-rank, the coefficients of
ListMLE are much more stable compared with SVM-rank. SVA-rank shows
sents. wn.h a big variance between the single Hestloon u[the validation
process; that s, despite the heavy overlapping of the sets, the learned
Coctents mry alot and can hardly be grncnlm‘(l

RQ3: Can the scoring function be simplif

Figure [L.4 shows a plot of the averaged NDCG measure for all 12 runs. Re-
member that we actually had three length measures, and we considered the
absolute and the relative values for all of them. As the reduction of the num-
ber of statements led to a higher NDCG for ListMLE (which tmlpcr(ummd
SVMraak wid resect to NDCG), wschon to me [t a8 o ength mes-
i T pratie, tha e senblesince, il LoC b comt empty and
Commented e the mnber of stotements ouly counts real code.

G

AMLE (abs)

Avg NDC

LoC Token Stat.
Length Measure

Fig. 1.4: Averaged NDCG When Considering Only One Length Measure

by Hitering out very suniiar candidaty
suggestions.

Tn the present paper, we focus on the ranking of candidates, and especially
on the scoring function that defines that ranking,

. I OFder (o obtain essentially difierent

1.3.2 Scoring Function

We aimed for an optimized scoring function that is capable of ranking extract
method refactoring candidates, so that top-most ranked candidates are most
likely to be chosen by developers for an extract method refictoring. The scor-
ing function is a linear function that calculates the dot product of a coefficient
veetor, ¢, and a feature value vector, f, for cach candidate. Candidates are
arranged in decreasing order of their score.

In this paper, we use a basis of 20 features for the scoring function. In
the [n“awmm we give a short overview about the features. There are three
of feature: complexity-related features, parameters, and structural

alommation
We illustrate the feature values with reference to two example refactoring
candidgtes (Cy and C3) that were chosen from the example method given in
Figure 1. The gray arca shows the nesting area, which is defined below. The
ambers specify the nesting depth of the corresponding statement.

Fig. 1.1: Example Method with Nesting uple 1.1: Features and Values
Aren of Sttements And Example C iy Exanple
idates

Complexity-related features

We mainly focused on reducing complexity and lability. For
complexiy Indicators, we used g, neting e data. flow nformation. For

on the ranking performance and removed it 1 the next iteration. A scoring
function that only considered the number of input parameters and length and
nesting area reduction still had an average NDCG of 0,885,

RQ4: How does the learned. scoring funetion compare with our manually
determined one?

The scoring function that we presented in 3] achieved a NDCG of 0.891,
which is better than the best scoring function learned in this evaluation

1.4.4 Discussion

Our results show that, in the initial run of the learning to rank tools, features
indicating a reduction of complexity are much more relevant.for the rankiny

 therefore have a comparatively high impact. Furthermore, the stabili
of ListMLE is higher on our data set than the stability of SVM-rank. For
SVM-rank there is a big variance in the learned coefficients, which might also
be a reason for the comparatively lower performance measure valucs.

The results for RQ3 show that it is passible to achieve a great simplification
without big reductions in the ranking performance. The biggest influences on
the ranking performance were the reduction of the number of statements, the
reduction of nesting area (both are complexity indicators), and the mumber
of input parameters.

ual improvement As already mentioned, the learned scoring functions
did not outperform the manually determined scoring function from our pre-
vious work. Obviously, the learning tools were not able to find optimal co-
efficients for the features. To improve the scoring function from our previ-
ous work, we did manual experiments that were influenced by the results of
ListMLE and SVM-rank, and evaluated the results using the whole learning
data set.

We were able to find several scoring functions that had only a handful
of features and a better ranking performance than our scoring function from
previous work (column “Previous’ in Table [13). In addition to the three most
important features that we obtained in the answer to RQ3 (features #3, #7.
#10), we also took the comment features (#14-17) into consideration. The

fferences between the previous scoring function and the manually im-
proved one from this paper are the length reduction measure, the omission of
nesting depth, and the number of output parameters.

By taking the results of ListMLE and SVM-rank into consideration, we
were able to find a coefficient ector such that the scoring function achieved
a NDCG of 0.894 (sce Table [L). That means that we were able to find a
better scoring function when we combined the findings of our previous work
with the learned coefficients from this paper.

1

Learning to Rank Extract Method Refactoring

Suggestions for Long Methods

Roman Haas! and Benjamin Hummel?

* Tochnical Un
roman.haas it

2 CQSE GmbH, Lichtenbergstr. 8, Garching, Germany
hummel eqse.cn

ersity of Munich, Lichtenbergstr. 8, Garching, Germany

ummary. Extract method refactoring is a common way to shorten long met
in software development. It improves code readabilty, reduces complexity, e
one of the most frequently used refactorings. Nevertheless, sometimes devel

refrain from applying it because identifying an appropriate set of statements that

D to |(| mxfy
Tor . oxtenc mthod refctosng that coud be suggted to
developers. Even though the evaluation has shown that the suggestions are useful
for developers, there is a lack of understanding of the scoring function. In this pa-
per, we present research on the single scoring features, and th

ranking capabiliy. In addition, we evaluate the rankin bi
scoring function, and derive a better and less complex one using learning to rank
techniques.

words: Learning to Rank, Refactoring Suggesti
ing, Long Method

Extract Method Refactor-

1.1 Introduction

long met] ¥ and makes
read, understand and test. A straight-forward way of shortening long methods
i to extract parts of them into a new method. This procedure s called extract
mehod efuctaring, o nthe most ofen vaed hetoring n pracice
1 of extracting a method can be ly automated by using
modern dovelopment environments, such s ERipso IDE or Inell) IDEA,
f extractable statements into a ne jowever,
developers still need to find this set of statements by themselves, which takes

FedUCtION Of the MEthod Iength (WIth Tespect (o the I0ngest method atter the

refactoring). We considered length based on the mumber of lines of code (LoC),

on the number of tokens, and on the number of statem all of them as
and relative to the original method length.

We consider highly nested methods as more complex than moderatel
nested ones, and use two features to represent. the reduction of nesting: re-
duction of nesting depth and reduction of nesting area. The nesting area ufn
meod withsttements S, (o Sy, cach having nestin depth o

ds,.. The idea of nesting area comes from the area alon
Che single stteanenes of prtty printe coe. (s th grny. e n Fx;.urvﬁ
taflow information can also indicate complexity. We have features rep-
resenting the number variables that are read, written or read and written.

Parameters

We considered the number of input and output parameters as an
data coupling betsween the original and the extracted methods, wh
o keep low using our suggestions. The more parameters that are needed for
a st of statements to be extracted from a method, the more the statements
will depend on the rest of the original method.

Structural information

Finally, we have some features that represent structural aspects of the coy
design principle for code is that methods should process only one thing
\lrllmdx that follow this principle are casir to understand. As developers
often put blank lines or comments between blocks of code that process some-
hing e, we s fentures represcntin e i and e munbes of bk
or commented lines at their beginning, o at their end. Additionally, for first
statement of the candidate, we check 10 sce whether the type o the preceding
he same; and for the last statement, we check to see whether the type of
the following statement is the same. Our last feature considers a structural
complexity indicator — the number of branching statements in the candidate.

1.3.3 Training and Test Data Generation

To be able to learn a scoring function, we need training and test data. We
derived this data by manually ranking approximately 1,000 extract method
refactoring suggestions. To obtain this learning data, we selected 13 Java
‘open source systems from varions domaius, and of different sizes. We cousider
a method to be "long’ if it has more than 40 LoC. From each project we
randomly selected 15 long methods. For each method, we randomly selected
valid . where the number the

method length.

1.5 Threats to Validity

Leamning from data sources that are either too similar o too small means
that there is a chance that no generalization of the results is possible. To have
enough data to enable us to learn a scoring function that can u..\k st
method refactoring candidates, we chose 13 Java open sou
oo dorinn e from cach projot we asdonly sekcred 15 long nwl!lmh
We manually reviewed the long methods, and filtered out those that were not.
appropeate o the extrut mathiod, From th 177 semalning koog mathods
ndomly chose five to nine valid refactoring suggestions, depending on

The metho ongth. We onsured that our larming data did not contin any
code clones to avoid learning from redundant data.
was performed by a single individual, which is a threat
o there i o commonly ngrd way on o (o shorten . long
method, and therefore no single ranking criterion exists. The ranking was
done very carefully, with the aim of reducing the complexity and increasing
the readability and understandability of the code as much as possible: so,
the scoring function should provide a ranking such that we can make further
refactoring suggestions with the same aim.

ied on two learning to rank tools, which represents another threat
to validity. The learned scoring functions heavily depend on the tool. As the
learned scoring functions vary, it is necessary to have an independent way of
evaluating the ranking performance of the learned scoring functions. We used
the widely used measure NDCG to evaluate the scoring functions, and applied
2 10-fold cross validation procedure to obtain a meaningful evaluation of the
ranking performance of the learned scoring function.

at to external validity is the fact that we derived our learning data
from 13 open source Java systems. Therefore, results are not necessarily gen-
eralizable.

1.6 Related Work

In our previous work (3], we presented an automatic approach to derive ex-
tract method refactoring suggestions for long methods. We obtained valid

Tienced developers sometimes select statements that cannot be extracted (1or
example, when several output parameters are required, but are not supported
)

by the ,.mgnmmu.g language;
1 by suggesting to developers which
tstmnts el e it o e et The presents
Soveral appronches hat can be s to fnd extract method efnctorings In
a previous work, we suggested a method that could be used to automatica)
find good extract method refactoring candidates for long Java methods
Our first prototype, which was derived from manual experiments on several
open source systems, implemented a scoring function to rank refactoring can-
idaten, T roult of our evaluation hae shown that this st prototype s
suggestions that are followed by experienced developers. The results of our
first prototype have been implemented in an industrial software quality anal-
yais tool.

Problem statement. The scoring function is an essential part of our ap-
proach to derive extract method refuctoring suggestions for long methods
«quality of our suggestions, and also important for the
complesity of the implementation of the refactoring suggester. However, it
currently unclear how good the scoring function actually performs in ranking
refactoring suggestions and how much complexity will be needed to obtain
useful suggestions. Thercfore, in order to enhance our work, we need a deeper
understanding of the scoring function.

Contribution. We do further research on the scoring function of our ap-
proach to derive extract method refactoring suggestions for long Java meth-
learning to rank techniques in order to learn which features of
relevant, to get meaningful refactoring suggestions,

to keep the scoring function as simple as possible. In addition, we cval-
o the raadag pecormaicsofour prevkos wcrng fucion, nd compare
it tion that we learned. For the machine learning
Setting, wo s 17 teaning and teating dat ks that we obtaned rom 15
el open soure ystans by maually eain five 0 e radomly
selected valid refactoring ca

T thi paper, we show how e e better extract metliod refactoring
suggestions than in our previous work using learning to rank tools.

1.2 Fundamentals

‘We use learning to rank techniques to obtain a scoring function that is able to
rank extract method refacto ates, and use normalized discounted

in (NDCG) metrics
Section, wo explain the techaiqucs tool and metrics that we use i ths paper,

¢ Code. Lhierelore, 1n the priuning step o our approach, we usually fiter
ot candidates that eed more tha hrce ot paraeters, s v
“long parameter list” mentioned by Fowler (2. To avoid learning that too many
input parameters are bad, we considered only candidates that had less th
four input parameters.

We ranked the selected candidates manually with respect to complexity
reduction and readability improvement. The higher the ranking we gave a
it the beter the sugstion was o 1

of the randomly selected methods were not suitable for an extract
method refactori only the case when the code would
not benefit from the extract method. but from other refactorings. In addition.
for some methods, we could not derive a meaningful ranking because there
were only very weak candidates. That is why we did not use 18 of the 195
randomly selected long methods to learn our scoring function

1.4 Evaluation

In this section, we present and evaluate the results from the learning proce-
dure.

1.4.1 Research Questions

RQI: What are the results of the learning tools? In order to get
scoring function that is capable of ranking the extract method refactoring
o rank tools that implement dif-
ferent approaches, and that had performed well in previous studies.
RQ2: How stable are the learned scoring functions? To be able to
derive i i l-world scoring function, the coefficients of the
learned scoring function should not vary a lot during the 10-fold eros evalu-
ation procedure.

RQ3: Can the scoring function be simplified? For practical reasons.
it is useful to have a scoring function with a limited number of features,
Additionally, reducing the search space may increase the performance of the
learning to rank tools - resulting in better scoring functions.

RQ4: How does the learned scoring function compare with our man-
ually determined one? In our previous work, we derived a scoring function
by manual experiments. Now we can use our learning data set to cvaluate
the ranking performance of the previously defined scoring function, and to
compare it with the learned one.

/50, vum.de/-hans /12 emxe_data. zig we provide o rankings

All valid relactoring candidates were ranked by a manually-determined scor-
& fnction that aims to reduce code mlup\rxlt} and increase readability. In
the present work, we have put the scoring function on more solid ground by
learning a scoring function from many long methods, and manually ranked
refactoring suggestions.

In thelterature, thereare several appronches that e 10 suggst
most beneficial refactorings — usually for code clones. Wang and Godfrey (1
propose an automated approach to ecommend clone for efactoring by saie
ing a decision-tree based classifier, C4.5. They use 15 features for decision-tree
model training, where four consider the cloning relationship, four the context.
of the clone, and seven relate to the code of the clone. In the present paper,
we have used a similar approach, but with a different aim: instead of clones,
we have focused on long methods.

Mondal et al. [10] rank clones for refactoring through mining association
rules. Their idea is that clones that are often changed together to maintain
sl functionlty ar vorty candidaes for rfactoring. Thelr prototype
tool, MARC: identifies clones that a mged
n mines association rules among these. A major rowlt of thes evabuation
on thirteen software systems is that clones that are highly ranked by MARC
are important refactoring possibilities. We used learning to rank techniques to
find a scoring function that is capable of ranking extract method refactoring
candidates from long methods.

1.7 Conclusion and Future Work

In this paper, we have presented an approach o derive oring function that
able to rank extract method refactoring suggestions by applying learning
o sank tools. The scoring function can b wsedto automatically rank cxtract
method refactoring candidates, and thus present a set of best refactoring sug-
gestions to developers. The resulting scoring function needs less parameters

hn provious scorng fctionsbut s » betier asking paformance
In the future, we would like to suggest sets of refactorings, especially those

We wonld also lke to find out whether the scoring function provides good
suggestions for object-oriented programming languages other than Java and
whether other features need to be considered in that case.

Acknowledgments

Thanks to the anonymous reviewers for their helpful feedback. This work was
partially funded by the German Federal Ministry of Education and Research
(BMBF), grant “QEfTckt, O1IS15003A" The responsibility for this article lies
with the authors,

Learning (o rank refers to machine learning techniques for training the model
in a ranking task [4]
There are several learning to rank approaches, where the pairwise and the
listwise approach usually perform better than common pointwise regression
approacies (8. The pairwise approach learns by comparing two training ob-
jocts and their given ranks (ground truthy), whereas in our case the listwise
learns from the list of al given rankings of refactoring suggestions
for a long mmwd Li ct al. [§ pointed out that the pairwise and the listwise
ly perform better than the pointwise approach. Thercfore,
el ot el n & pointiae Approach bt 1 airwise and Ttwise loraing
to rank tools
Qin et al. i3] constructed a benchmark collection for research on several
Iearning to rank tools on the Learning To Rank (LETOR) data st. Their
results support the hypothesis that pointise approaches perform badly com-
pared with pairwvise and listwise approaches. Tn adition, istwise approaclies
often perform better than pairwise. However, SVM-ank, a Tearning
to rank tool by Tsochantardis et al. (18], performs quite well and the first ex-
periments on our data set showed that. SVM-mank may lead us o interesting,
results. We set the parameter ~c to 0.5 and the paraucier # o 5,000 as a
trade-off betseeen time consumption and learning performance.
eside SVM-rank, we used a listwisc learning to rank tool, ListMLE by
Kinetal 1. s evgion, heyshowed st LtMLE peroras bttr
than ListNet by Cgo et al. (1, which was also cor
et al.. Lan et al. [f improved the learning capabilty of ListMLE, but did
not.provide binaties or source code; 50 we were unable to use the fmproved
version.
ListMLE noeds to be assigned a tolerance rate and a learning rate. In
a serics of experiments we performed. we found that the optimal lankmg
performance on our data set was with a tolerance rate of 0.001 and a lear
rate of 1E-15.

1.2.2 Training and Testing

The learning progess consisted of two steps: training and testing, We applied

cross-validation [16] with 10 scts, that is, we split our learning data into 10

sets of (nearly) equal size. We performed 10 iterations using these sets, where

nine of the sets were considered to be training data and one set was used as
data.

Test data
famction by onnpaing the rade of 8 idate det by the
learned scoring function with its grade given by the leaming data. We use
NDCG metric to compa scoring functions and their

To answer RQ1 and RQ2, we used the learning to rank tools SVM-rank and
ListMLE to perform a 10-fold cross validation on our training and test data
set of 177 long methods, and a total of 1,185 refactoring candidates. We il-
lustrate the stability of the single coefficients by using box plots that show.
how the coefficients are distributed over the ten iterations of the 10-fold cross
validation.

To answer RQ3, we simplified the learned scoring function by omitting
features, where the selection criterion for the omitted features s preservation
of the ranking capability of the scoring function. Our initial feature set con-

ined six different measures of length. For the sake of simplicity, we would
like to have only one measure of length in our scoring (uucuun To find \-ut
which measure best, fits in with our tra re-ran the
e (ugain i, LISILE and SVALraoi) bt this e with only one
length measurement, using each of the length measurements one at a time.
‘We continued with the feature set reduction wntil only one feature was left.

1.4.3 Results
The following paragraphs answer the research questions.

RQ1: What are the results of the learning tools?

Figures 1.3 and[L show the results of the 10-fold cross validation for ListMLE

and for SVM-rank, respectively. For each single feature, i, there is a box plot
of the corresponding coeff

Chnpity

Feature ¢
Feature i
f

1.2: Learning Result From From

Fig, Fig. 13: Learning Rest
LIstMLE With All Features SVALzank With All Features

Lo X Fro

L2 Coo, T. Qi ToY. Liu, MAF. Tk, aosd 1L L

pairwise approach to lstwise approach. In 24th ICML, 20

2 AL Fowler Aefciorng: bgroing e Desgnof ting Conde. Mditison Wesley
Wesley, Reading. PA, 1909,

extract method refactoring suggestions for

Trunsactions on

agapp
Jenges and beuwite In 300 :wr-......m..: Sympo

antion retieval iams and Thends
n :../......:...« Retrieval, 3(3)-22% $31, 2000,
k. C. Martin. Clean Code : A ok of Agle Softuuse Coabmenshp Rabt
Aartin series. Prentice Hall, Upper Saddle River, NJ, 20
5 M O K iy el &, Bt ik ko o chos e
6 hrough minig rulon. In CSMA-WCR
A Back. Wh o't people e ecto

1. . Murpy

¢ WRT, 2007

burphy-Hill and A P. Black. Breaking the basriers 10 successful refactosing

Observations and tools for extruct method. In 306 ICSE. 208

1% W. F. Opdyke. Refartoring Object-Oriented Frameworks. PhD thesis, Usiversity
A Dk o Mgl 181

14 A Ouni. A Mono-and Multi-objective. Approsch

Aefctoring PAD thok, Unhveeit de Montel. 2015,

15 T. Qin, T-Y. Liv, J. Xu, and H. Li. Letor: A benchmark collection for research

nation Retrieval, L3(4) 346

commending Softuwre

16, C. S, it Eneycopesia f machine ernig. Speinger, New York
w1

17N s
bistorcal

"L hxh-m

4 Chatslrsion Hatiiog eucare eccemions s on

V. Altun. Large margin etk
rdopmadent catpet verablin Jeamnit of Machive
1484, 2005,

o for refactoring wing

e, and
E n \\um.. TF K E

e Informaticn, 1(1) 27 43, 207,
21X Y, iy . Watg, W, Zhang, i H. L. Litwbne appeosch o aring
to rank: Theoey and algorithin. In 250k [CML, 2008

mpirical evabuation of rvfac-

M

nchen

®o

Salzburg

ty daus
WENCE THE VALUE OF QUALITY

Konferenz Tag 1 - 18.01.2017

Registration

Opening session [

BegriiBung &
Konferenzerdffnung

Keynote: Managing for Happiness

Coffee break & networking in the exhibition area / Kaffeepause & Networking im Ausstellungsbereich

Engineering Testen ist Unfug!...aber ist Continuous Integration fir
ty and Challenges frihe GS in Form von Mobile Apps
ware Engineering statischar Anzlyse wirklich

so einfach - Uber die
soziclogischen

t Planiiing Limited, Kelbotn,

=n
are-

Kontinuierliche Strukturierte Tests be Continuous Delivery - Feel
Architekturanalyss defizitdrer Dokumentation - your Quality - Every Day
Wia man zwei Flizgen mit

ziner Klzppe schldgt

{CA

ic Software GmbH

Improve your soft

maods th ze
techniquas
(TU Wi

System

ik GribH,

rds
Faster Releases at High
Quality - Experiences from

an Industrial Contest

. Kaiserslauter,

{FLUITSU Enabiling Software

Learning to Rank Extract
Method Refactoring
Suggestions for Long
Methods

sity of Munich,

architects

v of Gothenburg,

velopment to Requiremen

Ranorex in the Agile World Testumgebungen auf sinen
lick - zeitgem&hes
Testumagebungsmanagement
als Herzusforderung und

Agiles Requiremants
Management — eine
effizients Umsetzung mit

n agilen Pro;

crum in Embedded Zertifiziarung Quality

Systams Engineer fir das Internet

der Dinge

(iSQ1 GrnbH,

Walidating converted Java
Code via Symbelic Execution

Chronological Overview

Camera-
Registration Deadline Deadline Ready Deadline
TUM swQpD Version Slides

01/15 04/15 10/15 04/16 08/16 01/17

What is Different to Other Study Projects?

e More Freedom
— Topic
— Own research
— You define schedule and pace

e Requires high level of self-organization

e Better opportunities for personal growth

Personal Conclusion

e My GR was on my ,, mental Stack” during my entire studies in the Master’s program
e GR got me out of my comfort zone

e Learned a lot on research methodologies and practical application of machine
learning techniques

e Working on my research topic was fun for me

e | would doitagain ©

BA

GR

Tlimo Pawelka]
Automartische Erkennung der Sprache von Quelltext-Kommentaren
Bachelor’s Thesis, not published

Timo Pawelka,'ilmarjuergens:
s This Code Written in English? A Study of the Natural Language of Comments and Identifiers in Practice.

Proceedings of the 31st International Conference on Software Maintenance and Evolution (ICSME'15), 2015.

GR

MA

Raphael N6mmer,homan Haas
est Suite Minimization
Guided Research, to be published in Conference Proceedings of SWQD ‘20

%aphael Nommer
esign and Evaluation of Regression Test Suite Minimization Techniques
Master’s Thesis

Funding

Costs 1k€ — 5k€
e Travel and accomodation costs
e Conference fee

Funding sources (often mixed)
e Travel Subsidies

e Chairs

e DAAD scholarships

e e.g., CQSE

Decision processes take long, so organize this early!

Agenda

1. Motivation
2. Preparation

3. Doing the work

Get the Most out of your GR?!

e GR provides the opportunity to publish scientific work at a scientific venue.
e Nevertheless, formally, you do not need to publish anything

e My recommendation: aim for a scientific publication

M

nchen

®o

Salzburg

ty daus
WENCE THE VALUE OF QUALITY

Konferenz Tag 1 - 18.01.2017

Registration

Opening session [

BegriiBung &
Konferenzerdffnung

Keynote: Managing for Happiness

Coffee break & networking in the exhibition area / Kaffeepause & Networking im Ausstellungsbereich

Engineering Testen ist Unfug!...aber ist Continuous Integration fir
ty and Challenges frihe GS in Form von Mobile Apps
ware Engineering statischar Anzlyse wirklich

so einfach - Uber die
soziclogischen

t Planiiing Limited, Kelbotn,

=n
are-

Kontinuierliche Strukturierte Tests be Continuous Delivery - Feel
Architekturanalyss defizitdrer Dokumentation - your Quality - Every Day
Wia man zwei Flizgen mit

ziner Klzppe schldgt

{CA

ic Software GmbH

Improve your soft

maods th ze
techniquas
(TU Wi

System

ik GribH,

rds
Faster Releases at High
Quality - Experiences from

an Industrial Contest

. Kaiserslauter,

{FLUITSU Enabiling Software

Learning to Rank Extract
Method Refactoring
Suggestions for Long
Methods

sity of Munich,

architects

v of Gothenburg,

velopment to Requiremen

Ranorex in the Agile World Testumgebungen auf sinen
lick - zeitgem&hes
Testumagebungsmanagement
als Herzusforderung und

Agiles Requiremants
Management — eine
effizients Umsetzung mit

n agilen Pro;

crum in Embedded Zertifiziarung Quality

Systams Engineer fir das Internet

der Dinge

(iSQ1 GrnbH,

Walidating converted Java
Code via Symbelic Execution

Selection

Submissions

Jas

10-50% =t

4

JTTANN
a9 @@
AEa309Q

Aaaa ad

Pecking Order

[CSEs

Acronym

CHASE

CSI-5E

MET

RAISE

SEAD

SEsCPS

Full Name

11th International Workshop on Cooperative and Human Aspects of Software
Engineering

5th International \Workshop on Crowd Sourcing in Software Engineering
International \Workshop on Metamorphic Testing
SQUADE
SoHeal MiSE GE Sraeoe SER&IP
AST
WETSEB SEHS RoSE Fair\Ware SES0S
GREENS CES| SEFAIAS SBST RCoSE |

Aim: Submission to workshops

40" INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING corienatie: sweve

Date

27-May

27-May

27-May

SEAScdience
RET

SEEM

Conference
10%-25%

Workshop
40%-60%

£ © o o o

A A A A
Author Organizer Reviewer Reviewer Reviewer
1 2 3

. Call for Paper
Paper

T RFR

Several Months

!

. Accept/Reject

v

v
v

v

Review

A

AA

IWSC 2018

Call for Papers

12th International Workshop on Software Clones (IWSC 2018)

Registration

Objectives Program Call for Papers Important Dates Keynote Tearm Previous Editions W

Co-located with the 25th |[EEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2018)
March 20, 2018, Campobasso, Italy

Software clones are oflen a resy

slatement seguences Lo blocks,
miodels, reguirements or archite

today.

IW3SC sernes of events has provid
IWSC aims to bring researchers
particular, we expect the in-deptk

A0

about IWSC 2018 are here on thi
TOPICS OF INTEREST:
Topics of interest include but no

Use cases for clones and
Experiences with clones ar
Types and nature of cloned
Causes and effects of clor
Technigues and algarithm
Clone and clane pattern vi
Tools and systems for detd
Applications of clone deteq
Systern architecture and cl
Effect of clones to systern
Clone analysis in families d
Measures of code similarit
Economic and trade-off rm
Evaluation and benchrmark
Licensing and plagiarism i
Clone-aware software desi
Refactoring through clane

Clone evolution and variati
Role of clones in software

1 of revmuing anel pacting ae an et of adhee geies b nrepramenare and pan e st e lapsle fraem eimale
SUBMISSION:
Papers must conform to the |EEE proceedings paper format guidelines If the paper is accepted, at least one author must attend the workshop and

present the paper. Accepted papers will be published in the |EEE Xplore Digital Library along with the SANER proceedings.

All subrmissions must be in PDF and must be submitted online by the deadline via the WSC 2018 EasyChair conference managerment system.

Subrmit your papers here >>> EagyChair<<<

IMPORTANT DATES:

Abstract submission deadline: January 19,
Paper submission deadline: January 26,
Motifications: February 16, 20018
Camera Ready deadline: = February 22,
Workshop day: March 20 2018

GEMERAL CHAIR:
TED
PROGRAM CO-CHAIRS:

o Ying(Jenny) Zou (ying.zoumgueensu.ca), Queen's University, Canada
e Matthew Stephan (stephamd@miamioh.edu), Miami University, USA

STEERING COMMITTEE:

e James R Cordy, Queen's University, Canada
s Kalsuro Inous, Osaka University, Japan
o Rainer Koschke, University of Bremen, Germany

PAPERS SOUGHT:

Each paper will be reviewsd by at

lzast thies members of the program commitlee following a full double-blind process. Authors must adhere to SAMER's

double blind guidelines - http://sanerunimol.it/restrack. The following types of papers are sought

o Full papers (7 pages maximum)
« Pasition papers (2 pages maximurm)
o Tool demonstration papers (4 pages maximum)

IWSC 2018

Call for Papers

12th International Workshop on Software Clones (IWSC 2018)

Registration

Objectives Program Call for Papers Important Dates Keynote Tearm Previous Editions W

Co-located with the 25th |[EEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2018)
March 20, 2018, Campobasso, Italy

Software clones are oflen a resy

slatement seguences Lo blocks,
miodels, reguirements or archite

today.

IW3SC sernes of events has provid
IWSC aims to bring researchers

particular, we expect the in-deptk

A0

about IWSC 2018 are here on thi
TOPICS OF INTEREST:
Topics of interest include but no

Use cases for clones and ¢
Experiences with clones ar
Types and nature of cloned
Causes and effects of clor
Technigues and algarithm
Clone and clane pattern vi
Tools and systems for detd
Applications of clone deteq
Systern architecture and cl
Effect of clones to systern
Clone analysis in families d
Measures of code similarit
Economic and trade-aoff riy
Evaluation and benchrmark
Licensing and plagiarism i
Clone-aware software desi
Refactoring through clane
Higherdevel clones in mod
Clone evolution and variati
Role of clones in software

1 of revmuing anel pacting ae an et of adhee geies b nrepramenare and pan e st e lapsle fraem eimale
SUBMISSION:
Papers must conform to the |EEE proceedings paper format guidelines If the paper is accepted, at least one author must attend the workshop and

present the paper. Accepted papers will be published in the |EEE Xplore Digital Library along with the SANER proceedings.

All subrmissions must be in PDF and must be submitted online by the deadline via the WSC 2018 EasyChair conference managerment system.

Subrmit your papers here >>> EagyChair<<<

IMPORTANT DATES:

Abstract submission deadline: January 19, 2018 Aok
Paper submission deadline: January 26, 2018 AcE
Motifications: February 16, 20018
Camera Ready deadline: = February 2
Workshop day: March 20 2018

-
L

201

GEMERAL CHAIR:
TED
PROGRAM CO-CHAIRS:

o Ying(Jenny) Zou (ying.zoumgueensu.ca), Queen's University, Canada
e Matthew Stephan (stephamd@miamioh.edu), Miami University, USA

STEERING COMMITTEE:

e James R Cordy, Queen's University, Canada
s Kalsuro Inous, Osaka University, Japan
o Rainer Koschke, University of Bremen, Germany

PAPERS SOUGHT:

cach paper will be reviewsd by 21 least three members of the program comimittes following a full double-blind process. Authors must adhers to SANER's
double blind guidelines - http://sanerunimol.it/restrack. The following types of papers are sought
o Full papers (7 pages maximum)

« Pasition papers (2 pages maximurm)
o Tool demonstration papers (4 pages maximum)

Name

[oshihiro Kamiya

Daqing Hou
Tien Nguyen
Mils Gode
Jens Krinke

Utavio Lemos

Manishankar Mondal

Ravindra Naik

Robert Tairas

Minhaz Zibran

Eunjong_Choi

Michael Godfrey

Yoshiki Higo

Foutse Khomh

Micholas A. Kraft

Chanchal Roy

Hitesh Sajnani

Program Committee

Institiution

Shimane University
Clarkson University
University of Texas at Dallas
CQSE GmbH

University College London
ICT-UNIFESP

University of Saskatchewan
lata Consultancy Services
Vanderbilt University

University of New Orleans

Mara Institute of Science and Technology

University of Waterloo

Osaka University

Ecole Polytechnigue de Montréal

ABEB Corporate Research
University of Saskatchewan

Microsoft

Suresh Thummalapenta Microsoft

Kioyin Wang University of Texas at San Antonio

Marihiro Yoshida MNagoya University

Country
Japan
LSA
LSA
Germany
LK
Brazil
Canada
India
USA
USA
Japan
Canada
Japan
Canada
LSA
Canada
USA
USA
LSA

Japan

What If | have no Topic in Mind?

e Ask potential supervisors for ideas
— Supervisor from Bachelor’s Thesis
— Lectures
— Seminars

— Lab courses

e As asupervisor, | do not expect
— Students to come up with thesis topics
— Students to apply only for documented topics

e |f you have arough idea, discuss it with potential supervisors

Services Research

Development Audits Software Quality
Operations Quality Control e.g., Coding, Testing

Requirements for a GR topic

e |sthere a clear problem statement?
e (Can different solutions be evaluated objectively?

Why?

e Decision making while you work on it
e Easier to convince supervisor

e Easier to convince program chair

Even more important for a GR than BA/MA
More info: www.thesisguide.org

Wann ist ein Thema Schrott?

Wenn sich nicht klar beurteilen Igsst, ob eine Losung besser ist,
ne andere,

« Betreuer kann Professor einfacher iiberzeugen

"
B (=
F |
+ 1col* Il mf
e Gt
37 1640 H
i co
5! Gons
o Tee
1 36
& fnd i
% Gloy rYTTYY rTYY] 4
=7 d9ked 23fed d3fed
want - -
Grafiken aus Foliznsatz von Daniela

Unterstilitzung von Sprachentwicklung durch
Visualisierung

——

L v

Hem |

!i. @]

-

]:’.,.. F————

| Ii. @Y

Using Network Analysis for Recommendation of
Central Software Classes (Daniela Steidl, 2012)

F—

Themen-Antipatterns

http://www.thesisguide.org/

What Makes a Good Guided Research Supervisor

e Needs to have publishing experience

e Has already succesfully published
(ideally on the same workshop if you
aim for a publication)

e Sources: scholar.google.com, DBLP,
personal webpage

Roman Haas #

CQSE GmbH
Bestatigte E-Mail-Adresse bei cgse.eu

TITEL :

How can manual testing processes be optimized? developer survey, optimization

guidelines, and case studies
R Haas, D Elsner, E Juergens, A Pretschner, S Apel
Proceedings of the 29th ACM Joint Meeting on European Software Engineering ...

Is static analysis able to identify unnecessary source code?
R Haas, R Niedermayr, T Roehm, S Apel
ACM Transactions on Software Engineering and Methodology (TOSEM) 29 (1), 1-23

An evaluation of test suite minimization techniques
R Noemmer, R Haas
International Conference on Software Quality, 51-66

Deriving extract method refactoring suggestions for long methods
R Haas, B Hummel
International Conference on Software Quality, 144-155

Teamscale: tackle technical debt and control the quality of your software
R Haas, R Niedermayr, E Juergens
2019 IEEE/ACM International Conference on Technical Debt (TechDebt), 55-56

Learning to rank extract method refactoring suggestions for long methods
R Haas, B Hummel
Software Quality. Complexity and Challenges of Software Engineering in ...

ZITIERT VON

37

29

25

25

JAHR
2021
2020
2019
2015
2019

2017

Agenda

1. Motivation
2. Preparation

3. Doing the work

View as an Supervisor

XX, 209 :

? Regular meeting

Meeting on demand

ICSE 2021

ICSE 2021 received 615 submissions.

602 papers went through
a thorough review process
the program
committee decided to accept 138 papers

b

Program Board IcSEe Technical Papers

Tevfik Bultan Trac:

University of California, Santa
Barbara

Jordi Cabot
ICREA - UOC

Dimitra
Giannakopoulou
NASA Ames Research Center

Corina S Pasareanu

Carnegie Mellon University
Silicon Valley, NASA Ames

Frank Tip
Northeastem University

Monash University

Cristian Cadar
Imperial College London

Sunghun Kim
Hong Kong University of
Science and Technology

Lori Pollock
University of Delaware, USA

Chao Wang
University of Southern
Califor

- T PP

Program Committee icse Technical Papers

Jonathan Aldrich

Camegle Mellon University

Domenico Bianculli
University of Luxembourg

‘%P -

Rob DeLine

Microsoft Research

University of Buenos Aires,
Argentina

Arie Gurfinkel
University of Waterloo

m Diego Garbervetsky

Rashina Hoda
The University of Auckland

W

Na Meng

Patricia Lago
Vme Universiteit Amsterdam

Liliana Pasquale

University College Dublin &
Lero, Ireland

Ina Schaefer
Tectmnische ¢ unwersm
Braunschu

Burak Turhan
Brunel University

Yingfei Xiong
Peking University

Arie van Deursen
‘ Delft University of Technology

Aldeida Aleti

Monash University

A

Christian Bird
Microsoft Research

«

Danny Dig
School of EECS at Oregon
State University

Jaco Geldenhuys

University of Stellenbosch,
South Africa

William G.J. Halfond

University of Southern
California

Reid Holmes
University of British Columbia

=

4

Wei Le

fowa State University

Marija Mikic
Google

Marco Pistoia
1BM Research

Carolyn Seaman
University of Maryland
Baltimore County

Daniel Varro

McGill University / Budapest
University of Technology and
Economics

Tuba Yavuz

University of Florida

Andre van der Hoek
University of California, Irvine

il H®

Sven Apel
University of Passau

Marsha Chechik
University of Toronto

Andrew J. Ko
University of Washington

Michael Pradel
TU Damstadt

Dongmei Zhang
Microsoft Research, China

Dalal Alrajeh
Impsna! College London

Kelly Blincoe
University of Auckland

‘Yvonne Dittrich

IT University of Copenhagen,
Denmark

Milos Gligoric
University of Texas at Austin

Tracy Hall
Brunel University

Jennifer Horkoff

Chalmers and University of
Gothenburg

Emmanuel Letier
University College London

Raffaela Mirandola
Politecnico di Milano

Adam Porter
University of Maryland

Alexander Serebrenik
Eindhoven University of
echnology

Bogdan Vasilescu
Carnegie Mellon University

Cemal Yilmaz
Sabanc: University

ﬂﬁ*

) 4

2
oia
;3
=
Q
A
€

:

Andrew Begel
Microsoft Research

Jane Cleland-Huang
Unwevsny of Notre Dame.

Claire Le Goues
Camegle Mellon University

Abhik Roychoudhury
National University of
Singapore

Andrea Zisman
The Open University

Samik Basu
fowa State University

Barbora Buhnova
Masaryk University

Hakan Erdogmus
Cameque Mellon University

Michael W. Godfrey

University of Waterloo,

Sylvain Hallé

Université du Québec a
Chicoutimi, Canada

Jeff Huang
Texas A&M University

Grace Lewis

Camegie Melion Software
Eghios i lsiiita

Henry Muccini

University of L'Aquila, taly

Paul Ralph
Umvevslly of Auckland

Jocelyn Simmonds
University of Chile

Helene Waeselynck
RS

Xiangyu Zhang
Purdue University

n
‘
2

ﬁ?lb

[l
i
&

&

“ :

Antonia Bertolino
CNRASTI

Daniela Damian
University of Victoria

David Lo
singapore Management
iversity

Julia Rubin
University of British Columbia

Benoit Baudry

KTH Royal Institute of
Technology, Sweden
Sweds

Marcel Bohme
Monash University

Robert Feldt

Chalmers University of
Technology

Alex Groce
Northern Arizona University

Dan Hao
Peking University

James Jones
University of Califomia, Irvine

Anténia Lopes
University of Lisbon

Sarah Nadi
University of Alberta

Cindy Rubio-Gonzalez
University of California, Davis

Kathryn Stolee
North Carolina State
University

Westley Weimer
University of Michigan

Minghui Zhou
Peking University

Eric Bodden

Heinz Nixdorf Institut,
Paderborn University and
Fraunhofer IEM

Laura Dillon
Michigan State University

Darko Marinov

University of linois at Urbana-
Champaign

Koushik Sen

University of California,
Berkeley

Gabriele Bavota
Universita della Svizera
italiana (US1)

Maria Christakis
MPLSWS

Maria Angela Ferrario
Lancaster University
u =

John Grundy

Monash University

Mark Harman

Facebook and University
College London

Sarfraz Khurshid
University of Texas at Austin

Sam Malek
University of California, Irvine

Nachiappan
Nagappan
Microsoft Research

Caitlin Sadowski

Zhendong Su
ETH Zurich

Jim Whitehead

University of Califoria, Santa
Cruz

Ying Zou

Queens University, Kingston.
Ontari

P
¢

Ll
14
.-

B

F

w

HJ
®

£
&

Yuriy Brun

University of Massachusetts
Amherst

F Bernd Fischer

Stellenbosch University

Mira Mezini
TU Darmstadt, Germany

Eleni Stroulia
University of Alberta

Nelly Bencomo
Aston University
Uit Ko

Siobhan Clarke
Trinity College Dublin, Ireland

Antonio Filieri
|mp=na| Cnl!ege London

Lars Grunske

Humboldt-Universitat zu Berlin

Rachel Harrison
University of Oxford

Moonzoo Kim
KAIST

Shahar Maoz
Tel Aviv University

Shiva Nejati

SNT Centre/University of
Luxembourg

Anita Sarma
Oregon State University
Unied S

J Gabriele Taentzer

Universitat Marburg

Xin Xia
Monash University

Marcelo d'Amorim

Federal University of
Pemambuco

Margaret Burnett
Oregon State University

Alessandro Garcia
PUC-Rio

&

Richard Paige

McMaster University

By

Lin Tan
Purdue University

m

Ayse Bener
Ryerson University

2

James Clause
University of Delaware

Thomas Fritz

University of Zurich, University
of British Columbia

Paul Griinbacher
JKU Linz. Austria

Emily Hill
Drew University

Dimitris Kolovos
University of York

Wes Masri
American University of Beirut

Tien Nguyen

University of Texas at Dallas

B2 B ka5 o e

Federica Sarro
University College London,
UK

Christoph Treude
The University of Adelaide

Tao Xie

University of linois at Urbana-
Champaign

Cleidson de Souza
Vale Insfitute of Technology
and Federal University of Para
Belém. Brazil

) 4
A
2

!

s a1 NS AEREET EE. L LR Y NSRS NS GE LSS RN AL WL A SE. BRI
ey L THY PP P T f R ETmERRT Al N AETET A EmEEE e

g o S A T LA e i R T

el R AT S SRR R TR I BERSSE B A N SRR A R AN R S I R RS T | AN S, BN SR
EEF LT U LS DAL LIS ELEEY

e I ERE et rele i T Lot i ::_‘_E': LT "_':‘.:',.‘_ﬂ
o b e gy~ 4 e

e Gt e] e s e
e

ey - s 1t e o
e e = T jaate B

[rz=twaigh honl] B et o Sl Lt
e

=

e e | e e ——— —— E
L of =i

TELL AL et M 1 LR M B 1
Y g i TP S TE R S PSS PSSR BPS—— -y — -y)
=y Py ey ! :
T Ly Py
e T L e R S e T T P e 2 -

3 =y o E = Laip g

i

L JETE TRSSSSE RS Y RSy
=

e

s e s L S A W . T S B R 4 R A S A
s ma s = 2

EEiEE A0l PR T B FrOGNERL | G PRE EERRT PR R EEE Err e v e e e

i . _ . .
B R e = i = o ———
s — -

o e L B e g, B

g s i R, m e ey by ——y o P F e
L — pt]

RoA Gt R RACL SR A 4 N SSAGELL S T BE. E BT Y N AN LR, PR L SR S . LA S S P W e NN SN MSEL PR WG P RSSO PR G Y LA S S R S S R I R . N1 A N AN
B e
AT Y = T ol e o B e Fo e e et e S SN T e e e e P b s b, e e ey = i il
| - A B! kg a i - s pag -
- -
I P s | PR S SR Y —— em— — p—

B il e o B i et i (Bl it e e o e L el e B B b g i B i i o i s st e B SR B SRS
S S . S

- e WO R s

e
SIS ST LT T
S R — . o S ——
E e il e i g] B B]
T
e fed e e e e s T L N e W e P R W B Wk B ik S U Y Gk S e e e A R il Ve W
S — DR CRE R . L LR R
==
- et P ivipsieiren Pl e
g [yt e vy b s o erpr o e e o oy e - IR e S
- - o ot S e o 0.1 2 Bt . e .
NN ES— T S A I R i L e e N L] - N L
SR P S—— i — - . W - T N ST PG L P PRI DL P S TR S | P T P S PR S T, e
R WU - SR SRR P e ———
e T e T = ol apeteviarings sy i
s i = - . 1 o e, iy e M S iy M < Bl T i e, W) gy el e - -]
S AT s
—_— e e At R e e A G L A U S Y
s S
i
o e e st s g £t e et
e
i e SO R S S — ——
e e e i
[i e sty ot e e i ey —— wasm - .
Lrsms Tmmranme == =, T T a et
_—
;
sl
— - S ———
S
o T e it e b s o g . i e, s s ., 22, 2, e iy e 1 - [—
R B T e pe e T L T S T S e R e rmrmm R

Write for the Reviewer

e Make problem statement and contribution very clear

e Use established outline (e.g., see thesisguide)

e Make text easily readable. This is hard and exhausting work. But you can learn it,
this is no issue of talent.

https://thesisguide.org/2014/10/13/thesis-architecture/

My Personal Best Practices

e Block writing time

e Begin with outline

e Separate writing from improving

e Write complete paragraphs before improving them

e |Let text,cool down and proof-read it later again

e There is not the one silver-bullet way of writing

English Writing Center

e Free one-to-one consulting with native English speakers
— GR, Thesis, Homework, CV etc.
— Text needs not to be ready

https://www.sprachenzentrum.tum.de/sz/sprachen/englisch/english-writing-center/

https://www.sprachenzentrum.tum.de/sz/sprachen/englisch/english-writing-center/
https://www.sprachenzentrum.tum.de/sz/sprachen/englisch/english-writing-center/
https://www.sprachenzentrum.tum.de/sz/sprachen/englisch/english-writing-center/
https://www.sprachenzentrum.tum.de/sz/sprachen/englisch/english-writing-center/
https://www.sprachenzentrum.tum.de/sz/sprachen/englisch/english-writing-center/

1

Learning to Rank Extract Method Refactoring
Suggestions for Long Methods

Roman Haas' and Benjamin Hummel*

! Technical University of Munich, Lichtenbergstr. 8, Garching, Germany
roman.haastitum.de

? CQSE GmbH, Lichtenbergstr. 8, Garching, Germany
hummelGicgse.en

Summary. Extract method refactoring is a common way to shorten long methods
in software development. It improves code readability, reduces complesity, and is
one of the most frequently used
refrain from applying it because identifying an iate set of that

rienced select, that cannot be extracted (lor
example, wlmn several output parameters are required, but are not supported
by the programming language) [ﬁ]

The refactoring process can be improved by suggesting to developers which
statements could be extracted into a new method. The literature presents
several approaches that can be used to find extract method refactorings. In
& previous work, we suggested a method that could be used to automatically
find good extract method refactoring candidates for long Java methods
Our first prototype, which was derived from manual experiments on several
open source systems, implemented a seoring function to rank refactoring can-
didates, The result of our evaluation has shown that this first prototype finds
suggestions that are followed by experienced developers, The results of our
first prototype have been implemented in an industrial software quality anal-
ysis tool

Problem statement. The scoring function is an essential part of our ap-
proach to derive extract method refactoring sugges for long methods
It is decisive for the quality of our suggestions, and also important for the

can be extracted into a new method is error-prone and time-consuming.

In a previous work, we presented a method that could be used to automat-
ically derive extract method refactoring suggestions for long Java methods, that
generated useful suggestions for developers. The approach relies on a scoring func-
tion that ranks all valid refactoring possibilities (that is, all condidates) to identify
suitable candidates for an extract method refactoring that could be suggested to
developers. Even though the evaluation has shown that the suggestions are useful
for developers, there is a lack of understanding of the scoring function. In this pa-
per, we present research on the single scoring features, and their importance for the
ranking capability. In addition, we evaluate the rauking capability of the suggested
scoring function, and derive a better and less complex one using learning to rank
techniques.

Key words: Learning to Rank, Refactoring Suggestion, Extract Method Refactor-
ing, Long Method

1.1 Introduction

Along method is a bad smell in software systems (2], and makes code harder to
read, understand and test. A straight-forward way of shortening long methods
is to extract parts of them into a new method. This procedure is called ‘e: 't
method refactoring’, and is the most often used refactoring in pmrLicrﬁc
The process of extracting a method can be partially by using

of the i ion of the suggester. However, it is
currently unclear how good the scoring function actually performs in ranking
refactoring suggestions and how much complexity will be needed to obtain
wseful sugaestions. Therefore, in order to enhance our work, we need a deeper
understanding of the scoring funetion.

Contribution. We do further research on the scoring function of our ap-
proach to derive extract method refactoring suggestions for long Java meth-
ods. We use learning to rank techniques in order to learn which features of
the scoring function are relevant, to get meaningful refactoring suggestions,
and to keep the scoring function as simple as possible. In addition, we cval-
nate the ranking performance of our previous scoring function, aned compare
ing
setting, we use 177 training and testing data sets that we obtained from 13
well-known open source systems by manually ranking five to nine randomly
selected valid refactoring candidates.

In this paper, we show how we derived better extract method refactoring
suggestions than in our previous work using learning to rank tools,

with the new scoring function that we learned. For the machine lea:

1.2 Fundamentals

‘We use learning to rank techniques to obtain a scoring function that is able to
rank extract method refactoring candidates, and use normalized discounted

modern development environments, such as Eclipse IDE or Intelli] IDEA,
that can put a set of extractable statements into a new method. However,
developers still need to find this set of statements by themselves, which takes

mto the code, Lherelore, m the prumng step of our approach, we usually hiter
out candidates that need more than three input parameters, thus avoiding the
“long parameter list' mentioned by Fowler [2. To avoid learning that too many
input are bad, we only that had less than
four input parameters,

ranked the selected candidates mannally with respect to complexity
reduction and readability improvement. The higher the ranking we gave a
candidate, the better the suggestion was for us.

Some of the randomly selected methods were not suitable for an extract
method refactoring. That was most commonly the case when the code would
not benefit from the extract method, but from other refactorings. In addition,
for some methods, we could not derive a meaningful ranking because there
were only very weak candidates. That is why we did not use_18 of the 195
randomly selected long methods to learn our scoring function.!

1.4 Evaluation

In this section, we present and evaluate the results from the learning proce-
dure.

1.4.1 Research Questions

RQ1: What are the results of the learning tools? In order to gc(a

gain (NDCG) metrics to evaluate the ranking performance. In this
section, we explain the techniques, tools and metrics that we use in thi

paper.

To answer RQL and RQ2, we used the learning to rank tools SVM-rank and
ListMLE to perform a 10-fold cross validation on our training and test data
set of 177 long methods, and a total of 1,185 refactor candidates. We il
lustrate the stability of the single coefficients by using box plots that show
how the coefficients are distributed over the ten iterations of the 10-fold eross
validation

To answer RQ3, we simplified the learned scoring function by omitting
features, where the selection criterion for the omitted features is preservation
of the ranking capability of the seoring funetion. Our initial feature set con-
tained six different measures of length. For the sake of simplicity, we would
like to have only one measure of length in our scoring function. To find out
which measure best fits in with our training set, we re-ran the validation pro-
cedure (again using ListMLE and SVALrank), but this time with only one
length measurement, using each of the length measurements one at a time.
‘We continued with the feature set reduction until only one feature was left.

1.4.3 Results

The following paragraphs answer the research questi
RQ1: What are the results of the learning tools?

Figures L3 and [L4 show the results of the 10-fold cross validation for ListMLE
and for SVA-rank, respectively. For each single feature, 4, there is a bax plot

scoring function that is capable of ranking the extract method
candidates, we decided to use two learning to rank tools that plemeut d:lv
ferent approaches, and that had performed well in previous studies,

RQ2: How stable are the learned scoring functions? To be able to
derive implications for a real-world scoring function, the coefficients of the
learned scoring function should not vary a lot during the 10-fold cross evalu-
ation procedure.

RQ3: Can the scoring function be plified? For practical reasons,
it is useful to have a scoring function with a limited number of features.
Additionally, reducing the search space may increase the performance of the
learning to rank tools — resulting in better scoring functions.

RQ4: How does the learned scoring function compare with our man-
ually determined one? In our previous work, we derived a scoring function
by manual experiments. Now we can use our learning data set to evaluate
the ra g performance of the previously defined scoring function, and to
compare it with the learned one.

4 On http://in.tun.de/-haas/12r_emrc_data.zig we provide our rankings and
the corresponding code bases from which we generated the refactoring candidates.

of the cor coefficient, ¢;.
HE
0 o
0
- o -
B £
g E
H 2 W
g = Eel
-
L1 3
H
[—
(=]
0 20 40 -1 0
o &

Fig. 1.2 Learning Result From Fig. 1.3: Learning Result From
ListMLE With All Features SVM-rank With All Features

Learning to rank refers to machine learning techniques for training the model
in a ranking task [4].

here are several learning to rank approaches, where the pairwise and the
listwise approach usually perform better than common pointwise regression
approaches [8]. The pairwise approach learns by comparing two training ob-
jeets and their given ranks ("ground truth’), whereas in our case the listwise
approach learns from the list of all given rankings of refactoring suggesti
for a long method. Liu et al. [§] pointed out that the pairwise and the listwise
approaches usnally perform better than the pointwise approach. Therefore,
we do not rely on a pointwise approach but use pairwise and listwise learning
to rank tools.

Qin et al. {15] constructed a benchmark collection for research on several
learning to rank tools on the Learning To Rank (LETOR) data set. Thei
results support the hypothesis that pointwise approaches perform badly cor
pared with pairwise and listwise approaches. In addition, listwise approaches
often perform better than pairwise. However, SVM-rank, a pairwise learning
to rank tool by Tsochantardis et al. [18], performs quite well and the first ex-
periments on our data set showed that SVM-rank may lead us to interesting
results. We set the parameter -¢ to 0.5 and the parameter —# to 5,000 as a
trade-off between time consumption and learning performance.

Beside SVM-rank, we used a listwise learning to rank tool, ListMLE by
Kia et al, LEE]. In their evalugtion, they showed that ListMLE performs better
than ListNet by Cao et al. [1], which was also considered to be good by Qin
et al. Lan ct al. [7] improved the learning capability of ListMLE, but did
not provide binaries or source code; so we were unable to use the improved
ve

on.
ListMLE needs to be assigned a tolerance rate and a learning rate. In
& series of experiments we performed, we found that the optimal ranking
performance on our data set was with a tolerance rate of 0.001 and a learning
rate of 1E-15.

1.2.2 Training and Testing

The learning progess consisted of two steps: training and testing, We applied
cross-validation [E with 10 sets, that is, we split our learning data into 10
sets of (nearly) equal size. We performed 10 iterations using these sets. where
nine of the sets were considered to be training data and one set was used as
test data.

Test data is used o evaluato the ranking performance of the leamed scoring
function by the grade of a . by the
learned scoring function with its grade given by the learning data. We use
NDCG metric to compare different scoring functions and their performances.

WL.B73S, whereas for 5V M-rank it 1s U.7%0. ‘Lherefore, the scoring tunction lound
by ListMLE performed better than the scoring function found by SVM-rank

Table 1.2: Coefficients of Variation for Learned Coefficients

RQ2: How stable are the learned scoring functions?

Table [1.9 shows the average, minimum and maximum coefficients of varia-
tion (CV) for the learned coefficients for List MLE and for $VM-rank. Small
CVs indicate that in relative terms the results from the single ru n the
10-cross fold procedure did not vary a lot, whereas big CVs indicate big dif-
ferences between the learned coefficients. As the CVs of the single features
from ListMLE are much smaller than those of SVM-rank, the coefficients of
ListMLE are much more stable compared with SVMe-rank. SVM-rank shows
coefficients with a big vatiance between the single iterations of the validation
process; that is, despite the heavy overlapping of the training sets, the learned
coefficients vary a lot and can hardly be generalized.

g

RQ3: Can the scoring function be simplified?

Figure B shows a plot of the averaged NDCG measure for all 12 runs. Re-
member that we actually had three length measures, and we considered the
absolute and the relative values for all of them. As the reduction of the m
ber of statements led to a higher NDCG for ListMLE (which outperformed
SVM-rank with respect to NDCG), we chose to use it as our length mea-
sure. In practice, that seems sensible since, while LoC also count empty and
commented lines, the number of statements only counts real code.

g o BE ListMLE (abs)
& 087 B8 ListMLE (rel)
7086 B0 SVM-rank (abs)
Z 085 B8 SVM.rank (rel)

LoC Token Stat.
Length Measure

Fig. 1.4: Averaged NDCG When Considering Only One Length Measure

whieh 15 deseribed 10 more detail by Jarvelin and Kekalaimen [, and measures
the goodness of the ranking list (obtained by the application of the scoring
function). Mistal n the top-most ranks have a bigger impact on the DCG
measure value. This is useful and important to us because we will not suggest
all possible refactoring candidates, but only the highest-ranked ones. Given
a long method, m,, with refactoring candidates, %, suppose that 7, is the
ranking list on C; and y;, the set of manually determined grades, then, the
DCG at position k is defined as DOG(K) = 3, (2, G D(m(i)). where
G() is an exponential gain function, D() is a position discount Function,
and ,(7) is the position of refactoring candidate, ¢, in 7. We set G(j)
25— Land D(mi(j)) = ey To normalize the DCG, and to make it
comparable with measures of other long methods, we divide this DOG by the
DCG that a perfect ranking would have obtained. Therefore, the NDCG for a
candidate ranking will always be in [0, 1], where the NDCG of 1 ean only be
obtained by perfect rankings. In our evaluation, we consider the NDCG yalue
of the last position so that all ranks are taken into account. See Hang (1] for
further details.

1.3 Approach

We discuss our approach to improve the scoring function in order to find the
best suggestions for extract method refactoring.

1.3.1 Extract Method Refactoring Candidates

In our previous work [3], we presented an approach to derive extract method
refactoring suggestions automatically for long methods. The main steps are
generating valid extract method refactoring candidates, ranking the candi-
dates, and pruning the candidate list.

In the following, a refactoring candidate is a sequence tatements that
can be extracted from a method into a new method. The remainder is the
method that contains all the statements from the original method after ap-
plying the refactoring, plus the call of the extracted method. The suggested
refactorings will help to improve the readability of the code and reduce its
complexity, because these are main reasons for developers to initiate code
recon

We derived refactoring candidates from the control and data fow gr:
of a method using the Continuous Quality Assessment Toolkit (ConQATH)
open source software. We filtered out all invalid candidates, that is those that
violate preconditions that need to be fulfilled for extract method refactoring
(for details, see [12]). The second step of our approach was to rank the valid

lwwa. congat .org

on the ranking performance and removed It in the next reration. A scormg
function that enly considered the number of input parameters and length and
nesting area reduction still had an average NDCG of 0.885.

RQ{: How does the learned scoring function compare with our manually
determined one?

The scoring function that we presented in [3] achieved a NDCG of 0.891,
h is better than the best scoring function learned in this evaluation.

1.4.4 Discussion

Our results show that, in the initial run of the learning to rank tools, features
indicating a reduction of complexity are much more relevant for the ranking,
and therefore have a comparatively high impact. Furthermore, the stability
of ListMLE is higher on our data set than the stability of SVM-rank. For
SVM-rank there is a big variance in the learned coefficients, which might also
be a reason for the comparatively lower performance measure values.

The results for RQ3 show that it is possible to achieve a great simplification
without big reductions in the ranking performance. The biggest influences on
the ranking performance were the reduction of the mumber of statements, the
reduction of nesting area (both are complexity indicators), and the mumber
of input parameters

Manual improvement As already mentioned, the learned scoring functions
did not outperform the manually determined scoring function from our pre-
wvious work. Obviously, the learning tools were not able to find optimal co-
efficients for the features. To improve the scoring function from our previ-
ous work, we did manual experiments that were influenced by the results of
ListMLE and SVM-rank, and evaluated the results using the whole learning
data set.

‘We were able to find several scoring functions that had only a handful
of features and & better ranking performance than our scoring function from
previous work (column "Previous” in Table @). In addition to the three most
important features that we obtained in the answer to RQ3 (features #3, #7,
#10), we also took the comment features (#14-17) into consideration. The
main differences between the previous seoring funetion and the manually im-
proved one from this paper are the length reduction measure, the omission of
nesting depth, and the number of output parameters,

By taking the results of ListMLE and SVM-rank into consideration, we
were able to find a coefficient. vector such that the scoring function achieved
a NDCG of 0.894 (see Table That means that we were able to find a
better scoring function when we combined the findings of our previous work
with the learned coefficients from this paper.

Dy NILErng ouL Very SUnAr candidates, 10 Order to obtain essentially diterent
suggestions.

In the present paper, we focus on the ranking of candidates, and especi
on the scoring function that defines that rankis

Ly

1.3.2 Scoring Function

‘We aimed for an optimized scoring function that is capable of ranking extract
method refactoring candidates, so that top-most ranked candidates are most
likely to be chosen by developers for an extract method refactoring. The scor-
ing function is a linear function that caleulates the dot product of a coefficient
wvector, ¢, and a feature value vector, f, for each candidate. Candidates are
arranged in decreasing order of their

In this paper, we use a basis of 20 features for the scoring function. In
the following, we give a short overview about the features. There are three

reduction of the method length (with respect 1o the 10ngest method alter the
refactoring). We considered length based on the number of lines of code (LoC),
on the number of token nd on the number of statements — all of them as

both absolute values and relative to the original method length.

We consider highly nested methods as more complex than moderately
nested ones, and use two features to represent the reduction of nesting: re-
duction of nesting depth and reduction of nesting area. The nesting area of a
method with statements S) to S, each having a nesting depth of ds,, is de-
fined to be E;‘;, ds,. The idea of nesting area comes from the area alon
the single statements of pretty printed code (see the gray areas in Figus I

Dataflow information can also indicate complexity. We have features rep-
resenting the number variables that are read, written or read and written,

Parameters

We consi the number of input and output parameters as an indicator of

of feature: P ty-related features, and
information
We illustrate the feature values with reference to two example refactoring
candidates (Cy and C3) that were chosen from the example method given in
Figure L1 The gray area shows the nesting area, which is defined below. The
wl mbers specify the nesting depth of the corresponding statement.

e ¢

hex(ine &, boslesn B) ¢ e

PRRTRUEET]

e N
) et

'

- [:

" T

. obsac ¢ = nov Obswctir: T

. syacas out printincc) H

oy booa
’ FI

Fig. 1.1: Examplo Method with Nesting — Tuble 1.1: Features and Values

Area of Statements And Example Can- 11 Example
didates

Complexity-related features

We mainly focused on reducing ity and i i ility, For

complexity indicators, we used length, nesting and data flow information. For

[T

1.5 Threats to Validity

Learn from data sources that are either too similar or too small means
that there is a chance that no generalization of the results is possible. To have
enough data to enable us to learn a scoring function that can rank extract
method refactoring candidates, we chose 13 Java open source projects from
various domains and from each project we randomly selected 15 long methods,
‘We manually reviewed the long methods, and filtered out those that were not
appropriate for the extract method, From the 177 remaining long methods,
we randomly chose five to nine valid refactoring suggestions, depending on
the method length. We ensured that our learning data did not contain any
code clones to avoid learning from redundant data.

The manual ranking was performed by a single individual, which is a threat
to validity since there is no commonly agreed way on how to shorten a long
method, and therefore no single ranking criterion exists. The ranking was
done very carefully, with the aim of reducing the complexity and increasing
the readability and understandability of the code as much as possible; so,
the scoring funetion should provide a ranking such that we can make further
refactoring suggestions with the same aim.

Ve relied on two learning to rank tools, which represents another threat
to validity. The learned scoring functions heavily depend on the tool. As the
learned scoring functions vary, it is necessary to have an independent way of
evaluating the ranking performance of the learned scoring functions, We used
the widely used measure NDCG to evaluate the sco
a 10-fold cross validation
ranking performance of the learned scoring function.

A threat to external validity is the fact that we derived our learning data
from 13 open source Java systems. Therefore, results are not necessarily
eralizable.

to obtain a of the

1.6 Related Work

Tn our previous work [3], we presented an automatic approach to derive ex-
tract method refactoring suggestions for long methods. We abtained valid

data coupling between the original and the extracted methods, which we want
to keep low using onr suggestions. The more parameters that are needed for
& set of statements to be extracted from a method, the more the statements
will depend on the rest of the original method.

Structural information

Finally, we have some features that represent structural aspects of the co
inei hould process only one thing
Metheds that follow this principle are easier to understand. As developers
often put blank lines or comments between blocks of code that process some-
thing else, we use features representing the existence and the number of blank
or commented lines at their beginning, or at their end. Additionally, for first
statement of the candidate, we check to see whether the type of the preceding
the same; and for the last statement, we check to see whether the type of
the following statement is the same. Our last feature considers a structural
complexity indicator — the number of in the candid

1.3.3 Training and Test Data Generation

To be able to learn a scoring function, we need training and test data. We
derived this data by manually ranking approximately 1,000 extract method
refactoring suggestions. To obtain this learning data, we selected 1
Open source syste various domains, and of different
a method to be 'long’ it has more than 40 LoC. From each proj
randomly seleeted 15 long methods. For each method, we randomly selected
valid refactoring candidates, where the number of candidates depended on the
method length,

fron izes. We con

All valid relactormg candidates were ranked by a manually-determined scor-
ing function that aims to reduce code complexity and increase readability. In
the present work, we have put the scoring function on mere solid ground by
learning a scoring function from many long methods, and manually ranked
refactoring suggestions.

In the literature, there are several approaches that learn to suggest tl
o5t beneficial refactorings ly for code clones, Wang and Godfrey
propase an d approach to 1 by train-
iz a decision-tree based classifier, C4.5. They use 15 features for decision-tree
model training, where four consider the cloning relationship. four the context
of the clone, and seven relate to the code of the clone. In the present paper,
we have used a similar approach, but with a different aim: instead of clones,
we have focused on_long methods.

Mondal et al. [10] rank clones for
rules. Their idea is that clones that are often changed together to maintain
a similar functionality are worthy candidates for refactoring. Their prototype
tool, MARC, identifies clones that are often changed together in a similar way,
and mines association rules among these. A major result of their evaluation
on thirteen software systems is that clones that are highly ranked by MARC
are important refactoring possibilities. We used learning to rank techniques to
find a scoring function that is capable of ranking extract method refactoring
candidates from long methods.

1 clones for r

1.7 Conclusion and Future Work

In this paper, we have presented an approach to derive a scoring function that
is able to rank extract method refactoring suggestions by applying learning
to rank tools. The scoring function can be used to automatically rank extract
method refactoring candidates, and thus present a set of best refactoring sug-
gestions to developers. The resulting scoring funetion needs less parameters
than previons scoring functions but has a better ranking performance.

In the future, we would like to suggest sets of refactorings, especially those
that remove clones from the code

‘We would also like to find out whether the scoring function provides good
suggestions for object-oriented programming languages other than Java and
whether other features need to be considered in that case,

Acknowledgments

Thanks to the anonymous reviewers for their helpful feedback. This work was
partially funded by the German Federal Ministry of Education and Research
(BMBF), grant "Q-Effekt, 011S15003A”. The responsibility for this article lies
with the authors.

Prepare Presentation

Ba
re
s 4
]
}
LN
e
4
Weresnn

L P A e Py e

How to Draft Your Presentation

!
LTS P =

Y

O e et 1'5“7-|

- G

http: isguide.org/2015/03/04/how-to-drat-your-p

https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/

https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/
https://thesisguide.org/2015/03/04/how-to-draft-your-presentation/

Presentation Differences to BA/MA

e Rehearsal talk with supervisor
e Practice it in English
e Formulate starting sentences and learn them by heart

e Backup slides for questions (e.g., more details)

Conclusion

Do you want to do your own research and get to know the research
community? Then a guided research is the best you can do!

https://cqse.eu/feedback-tum-talk
https://cqse.eu/feedback-tum-talk
https://cqse.eu/feedback-tum-talk
https://cqse.eu/feedback-tum-talk
https://cqse.eu/feedback-tum-talk

Thank you!

If you are interested in a
guided research in the field
of software analysis and
testing, please let me know:

Feedback:

haas@cqgse.eu

More Info:
www.thesisguide.org

http://cqse.eu/feedback-tum-talk

mailto:haas@cqse.u
http://www.thesisguide.org/
http://cqse.eu/feedback-tum-talk
http://cqse.eu/feedback-tum-talk
http://cqse.eu/feedback-tum-talk
http://cqse.eu/feedback-tum-talk
http://cqse.eu/feedback-tum-talk

	Slide 1: How to Write a Great Guided Research And why should I do it?
	Slide 2
	Slide 3: thesisguide.org
	Slide 4: Agenda
	Slide 5: Guided Research
	Slide 6: Guided Research Master’s Thesis
	Slide 7: Less Formal than a Thesis
	Slide 8: There are some formalia, though…
	Slide 9: Learning to Rank Extract Method Refactoring Suggestions for Long Methods
	Slide 10: Result
	Slide 11
	Slide 12: Chronological Overview
	Slide 13: What is Different to Other Study Projects?
	Slide 14: Personal Conclusion
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Funding
	Slide 19: Agenda
	Slide 20: Get the Most out of your GR?!
	Slide 21
	Slide 22
	Slide 23: Pecking Order
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: What If I have no Topic in Mind?
	Slide 29
	Slide 30: Requirements for a GR topic
	Slide 31: What Makes a Good Guided Research Supervisor
	Slide 32: Agenda
	Slide 33: View as an Supervisor
	Slide 34: ICSE 2021
	Slide 35
	Slide 36
	Slide 37: Write for the Reviewer
	Slide 38: My Personal Best Practices
	Slide 39: English Writing Center
	Slide 40
	Slide 41: Prepare Presentation
	Slide 42: Presentation Differences to BA/MA
	Slide 43: Conclusion
	Slide 44
	Slide 45: Thank you!

